(12)如图,四棱锥的底面
为正方形,
平面
,
,
,
分别为
,
和
的中点. (1)求证
平面
.(2)求异面直线
与
所成角的正切值.
((本小题满分12分)
已知曲线上任意一点
到两个定点
和
的距离之和为4.
(1)求曲线的方程;
(2)设过的直线
与曲线
交于
、
两点,且
(
为坐标原点),求直线
的方程.
(.(12分)设椭圆:
的左、右焦点分别是
,下顶点为
,线段
的中点为
(
为坐标原点
),如图.若抛物线
:
与
轴的交点为
,且经过
点.
(1)求椭圆的方程;
(2)设,
为抛物线
上的一动点,过点
作抛
物线
的切线交椭圆
于
两点,求
面积的最大值.
( (12分)直四棱柱中,底面
是等腰梯形,
,
,
为
的中点,
为
中点.
(1) 求证:;
(2) 若,求
与平面
所成角的大小.
(12分)某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是
,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该学生考上大学的概率;
(2)如果考上大学或参加完5次考试就结束,求该生至少参加四次考试的概率.
(10分)已知数列
的前
项和
,
。
(1)求数列的通项公式
;
(2)记,求