(本题满分14分)已知函数的图像过点(1,3),且
对任意实数都成立,函数
与
的图像关于原点对称.
(Ⅰ)求与
的解析式;
(Ⅱ)若在[-1,1]上是增函数,求实数λ的取值范围.
(本小题满分16分)过原点O作圆x2+y2-8x=0的弦OA。
求弦OA中点M的轨迹方程;
(2)如点是(1)中的轨迹上的动点,
①求的最大、最小值;
②求的最大、最小值。
(本小题满分14分)求圆心在直线上,且过两圆
,
交点的圆的方程。
(本小题满分14分)已知圆与y轴相切,圆心在直线: x-3y=0上,且在直线
上截得的弦长为
,求该圆的方程.
(本小题满分14分)已知圆C:
(1)将圆C的方程化成标准方程并指出圆心C的坐标及半径的大小;
(2)过点引圆C的切线,切点为A,求切线长
;
(3)求过点的圆C的切线方程;
(本小题满分12分)若圆与圆
交点为A,B,求:(1) 线段AB的垂直平分线方程.
(2) 线段AB所在的直线方程.
(3) 求AB的长.