已知函数
.
(Ⅰ) 讨论
的奇偶性;
(Ⅱ)判断
在
上的单调性并用定义证明.
在△ABC中,A最大,C最小,且A=2C,a+c=2b,求此三角形的三边之比.
已知方程tan2x一
tan x+1=0在x
[0,n
)( n
N*)内所有根的和记为an
(1)写出an的表达式;(不要求严格的证明)
(2)记Sn = a1 + a2 +…+ an求Sn;
(3)设bn =(kn一5)
,若对任何n
N* 都有an
bn,求实数k的取值范围.
已知数列
的前n项和
(n为正整数)。
(Ⅰ)令
,求证数列
是等差数列,并求数列
的通项公式;
(Ⅱ)令
,
试比较
与
的大小,并予以证明。
已知椭圆
的离心率为
,焦点到相应准线的距离为
(1)求椭圆C的方程
(2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为
,求
面积的最大值。
设数列
是有穷等差数列,给出下面数表:
……
第1行
……
第2行
… … …
… …
… 第n行
上表共有行,其中第1行的个数为
,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为
.
(1)求证:数列
成等比数列;
(2)若
,求和
.