(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC, PC的中点.
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.
在平面直角坐标系中,已知圆
经过
,
两点,且圆心在直线
上.
(1)求圆的标准方程;
(2)过圆内一点
作两条相互垂直的弦
,当
时,求四边形
的面积.
(3)设直线与圆
相交于
两点,
,且
的面积为
,求直线
的方程.
已知的顶点
,
边上的高
所在直线的方程为
,
边上中线
所在直线的方程为
.
求:(1)点的坐标;
(2)直线的方程.
如图,在三棱锥中,平面
平面
,
,
.设
,
分别为
,
中点.
(1)求证:平面
;
(2)求证:平面
;
(3)试问在线段上是否存在点
,使得过三点
,
,
的平面内的任一条直线都与平面
平行?若存在,指出点
的位置并证明;若不存在,请说明理由.
已知集合,
,命题
:
,命题
:方程
表示焦点在
轴上的椭圆.
(1)若命题为真命题,求实数
的取值范围;
(2)若“”为真,“
”为假,求实数
的取值范围.
如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,,
.
(Ⅰ)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(Ⅱ)为使两位游客在处互相等待的时间不超过
分钟,乙步行的速度应控制在什么范围内?