设是定义在R上的函数
(1)f(x)可能是奇函数吗?
(2)当a=1时,试研究f(x)的单调性
(本小题满分16分)已知数列(
,
)满足
,
其中
,
.
(1)当时,求
关于
的表达式,并求
的取值范围;
(2)设集合.
①若,
,求证:
;
②是否存在实数,
,使
,
,
都属于
?若存在,请求出实数
,
;若不存在,请说明理由.
已知函数(
为常数),其图象是曲线
.
(1)当时,求函数
的单调减区间;
(2)设函数的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
【原创】(本小题满分16分)在平面直角坐标系中,椭圆
过点
,一条准线方程为
.线段
是过左焦点
且不与
轴垂直的焦点弦.
(1)求椭圆的方程及离心率;
(2)在左准线上是否存在点,使
为正三角形.
某种商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入
万元作为技改费用,投入50万元作为固定宣传费用,投入
万元作为浮动宣传费用.试问:当该商品明年的销售量
至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD,PB=PD,
⊥
,
⊥
,
,
分别是
,
的中点,连结
.
求证:(1)∥平面
;
(2)⊥平面
.