((本小题满分14分)
数列是以
为首项,
为公比的等比数列.令
,
,
.
(1)试用、
表示
和
;
(2)若,
且
,试比较
与
的大小;
(3)是否存在实数对,其中
,使
成等比数列.若存在,求出实数对
和
;若不存在,请说明理由.
已知中,
,
.设
,记
.
(1)求的解析式及定义域;
(2)设,是否存在实数
,使函数
的值域为
?若存在,求出
的值;若不存在,请说明理由.
如图,已知圆锥体的侧面积为
,底面半径
和
互相垂直,且
,
是母线
的中点.
(1)求圆锥体的体积;
(2)异面直线与
所成角的大小(结果用反三角函数表示).
已知函数,
的图像分别与
轴、
轴交于
、
两点,且
,函数
. 当
满足不等式
时,求函数
的最小值.[
已知点列满足:
,其中
,又已知
,
.
(I)若,求
的表达式;
(II)已知点B,记
,且
成立,试求a的取值范围;
(III)设(2)中的数列的前n项和为
,试求:
。
已知点为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点
,使得
总能被
轴平分