(本小题共13分)
在平面直角坐标系中,已知圆
的圆心为
,过点
且斜率为
的直线
与圆
相交于不同的两点
.
(Ⅰ)求圆的面积;
(Ⅱ)求的取值范围;
(Ⅲ)是否存在常数,使得向量
与
共线?如果存在,求
的值;如果不存在,请说
明理由.
如图,已知三棱锥的侧棱
两两垂直,且
,
,
是
的中点。
(1)求异面直线与
所成角的余弦值;
(2)求和平面
所成角的正弦值。
用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
已知函数,
(1)解不等式;
(2)若对于,有
.求证:
.
在直角坐标系中,直线
的参数方程为
(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为
.
(1)求圆C的直角坐标方程;
(2)设圆C与直线将于点
、
,若点
的坐标为
,求
的值 .
如图,圆与圆
内切于点
,其半径分别为3与2,圆
的弦
交圆
于点
(
不在
上),
是圆
的一条直径.
(1)求的值;
(2)若,求
到弦
的距离.