某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (1)若某位顾客消费128元,求返券金额不低于30元的概率; (2)若某位顾客恰好消费280元,并按规则参与了活动, 他获得返券的金额记为(元).求随机变量的分布列和数学期望.
已知三角形的三个顶点是. (1)求边上的高所在直线的方程; (2)求边上的中线所在直线的方程
在正方体中,是的中点. (1)求证:平面; (2)求证:.
如图,已知四棱台上,下底面分别是边长为3和6的正方形.且底面,点分别在棱上. (1)点是的中点,证明:; (2)若平面,二面角的正切值为,求四面体的体积.
如图,在正四棱锥中,,分别是棱的中点,平面平面. (1)证明:平面; (2)求异面直线与夹角的余弦值.
如图,是圆台上底面圆的直径,是圆上不同于的一点,是下底面圆上一点,过的截面垂直与下底面,为的中点,又. (1)求证:平面; (2)求二面角的余弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号