如图,在五面体中,四边形
是正方形,
平面
,
∥
,
,
,
。
(Ⅰ)求异面直线与
所成角的余弦值;
(Ⅱ)证明⊥平面
;
(Ⅲ)求二面角的正切值
下图是某地区2000年至2016年环境基础设施投资额 (单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了 与时间变量 的两个线性回归模型.根据2000年至2016年的数据(时间变量 的值依次为 )建立模型①: ;根据2010年至2016年的数据(时间变量 的值依次为 )建立模型②: .
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
记
为等差数列
的前
项和,已知 ,
.
(1)求 的通项公式;
(2)求 ,并求 的最小值.
设函数 .
(1)画出 的图像;
(2)当 , ,求 的最小值.
在平面直角坐标系 中, 的参数方程为 ( 为参数),过点 且倾斜角为 的直线 与 交于 两点.
(1)求 的取值范围;
(2)求 中点 的轨迹的参数方程.
已知函数 .
(1)若 ,证明:当 时, ;当 时, ;
(2)若 是 的极大值点,求 .