(本小题满分12分)已知点在抛物线上(如图), 过作轴交抛物线于另一点,设抛物线与轴相交于两点,试求为何值时,梯形的面积最大,并求出面积的最大值.
已知为数列的前项和,,. ⑴设数列中,,求证:是等比数列; ⑵设数列中,,求证:是等差数列; ⑶求数列的通项公式及前项和. 【解题思路】由于和中的项与中的项有关,且,可利用、的关系作为切入点.
已知等差数列与等比数列中,,求的通项.
观察下面由奇数组成的数阵,回答下列问题: ⑴求第六行的第一个数; ⑵求第20行的第一个数; ⑶求第20行的所有数的和.
首项为正数的数列 { a n } 满足 a n + 1 = 1 4 ( a n 2 + 3 ) , n ∈ N * . (Ⅰ)证明:若 a 1 为奇数,则对一切 n ≥ 2 , a n 都是奇数; (Ⅱ)若对一切 n ∈ N * ,都有 a n + 1 > a n ,求 a 1 的取值范围。
用分析法证明:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号