(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面
的距离.
已知向量=(
sin2x+2,cosx),
=(1,2cosx),设函数f(x)=
·
.
(I)求f(x)的最小正周期与单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若a=,f(A)=4,求b+c的最大值.
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且
=
=
.
(Ⅰ)求证:直线ER与GR′的交点P在椭圆:
+
=1上;
(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为
,求证:直线MN过定点;并求△GMN面积的最大值.
2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表):
月收入(百元) |
赞成人数 |
[15,25) |
8 |
[25,35) |
7 |
[35,45) |
10 |
[45,55) |
6 |
[55,65) |
2 |
[65,75) |
1 |
(I)试根据频率分布直方图估计这60人的平均月收入;
(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.
如图,矩形A1A2A′2A′1,满足B、C在A1A2上,B1、C1在A′1A′2上,且BB1∥CC1∥A1A′1,A1B=CA2=2,BC=2,A1A′1=
,沿BB1、CC1将矩形A1A2A′2A′1折起成为一个直三棱柱,使A1与A2、A′1与A′2重合后分别记为D、D1,在直三棱柱DBC-D1B1C1中,点M、N分别为D1B和B1C1的中点.
(I)证明:MN∥平面DD1C1C;
(Ⅱ)若二面角D1-MN-C为直二面角,求的值.
已知函数f(x)="ax3" + x2 - ax (且a
).
(I) 若函数f(x)在{-∞,-1)和(,+∞)上是增函数¥在(
)上 是减函数,求a的值;
(II)讨论函数的单调递减区间;
(III)如果存在,使函数h(x)="f(x)+"
,x
(b> - 1),在x = -1处取得最小值,试求b的最大值.