(本小题满分13分)已知椭圆()的右焦点为,离心率为.(Ⅰ)若,求椭圆的方程;(Ⅱ)设直线与椭圆相交于,两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.
试求曲线y=sinx在矩阵MN变换下的函数解析式,其中M=,N=.
已知矩阵M=,求M的特征值及属于各特征值的一个特征向量.
已知M=. (1)求逆矩阵M-1; (2)若矩阵X满足MX=,试求矩阵X.
将双曲线C:x2-y2=1上点绕原点逆时针旋转45°,得到新图形C′,试求C′的方程.
已知二阶矩阵M有特征值=8及对应的一个特征向量e1=,并且矩阵M对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M; (2)求矩阵M的另一个特征值及对应的一个特征向量e2的坐标之间的关系.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号