已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量m=(1,1-sinA),n=(cosA,1),且m^ n.
(Ⅰ)求角A;
(Ⅱ)若b+c=a,求sin(B+)的值.
已知,
,且直线
与曲线
相切.
(1)若对内的一切实数
,不等式
恒成立,求实数
的取值范围;
(2)当时,求最大的正整数
,使得对
(
是自然对数的底数)内的任意
个实数
都有
成立;
(3)求证:.
设,
,其中
是常数,且
.
(1)求函数的极值;
(2)证明:对任意正数,存在正数
,使不等式
成立;
(3)设,且
,证明:对任意正数
都有:
.
已知二次函数,关于x的不等式
的解集为
,其中m为非零常数.设
.
(1)求a的值;
(2)如何取值时,函数
存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:
设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…).
设命题p:关于x的不等式2|x-2|<a的解集为;命题q:函数y=lg(ax2-x+a)的值域是R.如果命题p和q有且仅有一个正确,求实数a的取值范围.