.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 |
12月1日 |
12月2日 |
12月3日 |
12月4日 |
12月5日 |
温差![]() |
10 |
11 |
13 |
12 |
8 |
发芽数![]() |
23 |
2![]() |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:
)
(本小题满分12分)有4名老师和4名学生站成一排照相。
(I)4名学生必须排在一起,共有多少种不同的排法?
(II)任两名学生都不能相邻,共有多少种不同的排法?
(III)老师和学生相间排列,共有多少种不同的排法?(要求用数字作答)
(本小题共10分)在直三棱柱中,
,
,求
与侧面
所成的角。
设是定义在实数
上的函数,
是定义在正整数
上的函数,同时满足下列条件:
(1)任意,有
,当
时,
且
;
(2);
(3),
试求:(1)证明:任意,
,都有
;
(2)是否存在正整数,使得
是25的倍数,若存在,求出所有自然数
;若不存在说明理由.(阶乘定义:
)
已知正实数,设
,
.
(1)当时,求
的取值范围;
(2)若以为三角形的两边,第三条边长为
构成三角形,求
的取值范围.
已知向量,设函数
,
(1)求的单调区间;
(2)若在区间
上有两个不同的根
,求
的值.