.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 |
12月1日 |
12月2日 |
12月3日 |
12月4日 |
12月5日 |
温差![]() |
10 |
11 |
13 |
12 |
8 |
发芽数![]() |
23 |
2![]() |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:
)
(本小题满分12分)某厂生产某种产品的年固定成本为万元,每生产
(
)千件,需另投入成本为
,当年产量不足
千件时,
(万元);当年产量不小于
千件时,
(万元).通过市场分析,若每件售价为
元时,该厂年内生产该商品能全部销售完.
(1)写出年利润(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
(本小题满分12分)在中,内角
的对边分别为
,且
=
.
(1)求角的大小;
(2)若,求
的面积
的最大值.
(本小题满分12分)已知命题:对
,不等式
恒成立;命题
有解,若
为真,求实数
的取值范围.
(本小题满分10分)以坐标原点为中心,焦点在轴上的椭圆,长轴长为
,短轴长为
,过它的左焦点
作倾斜角为
的直线
交椭圆于
,
两点,求
的长.
(本小题满分10分)选修4-5:不等式选讲
已知函数f(x)=|x+2|+|x-2|.
(1)求不等式f(x)≥6的解集;
(2)若f(x)≥a2-3a在R恒成立,求实数a的取值范围.