已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角P—CD—B的大小;
(Ⅲ)求点C到平面PBD的距离.
设:P: 指数函数在x∈R内单调递减;Q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点。如果
为真,
也为真,求a的取值范围。
双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线方程.
为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m.
(1)求直线EF的方程(4 分 ).
(2)应如何设计才能使草坪的占地面积最大?
一圆与轴相切,圆心在直线
上,在
上截得的弦长为
,求此圆的方程.