过点M(4,2)作x轴的平行线被抛物线截得的弦长为
。
(I)求p的值;
(II)过抛物线C上两点A,B分别作抛物线C的切线
(i)若交于点M,求直线AB的方程;
(ii)若直线AB经过点M,记的交点为N,当
时,求点N的坐标
已知直线,圆
.
(Ⅰ)证明:对任意,直线
与圆
恒有两个公共点.
(Ⅱ)过圆心作
于点
,当
变化时,求点
的轨迹
的方程.
(Ⅲ)直线与点
的轨迹
交于点
,与圆
交于点
,是否存在
的值,使得
?若存在,试求出
的值;若不存在,请说明理由.
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(Ⅰ)求n的值;
(Ⅱ)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;
(Ⅲ)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数
,并按如右所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
(本小题满分13分)某同学大学毕业后在一家公司上班,工作年限和年收入
(万元),有以下的统计数据:
![]() |
3 |
4 |
5 |
6 |
![]() |
2.5 |
3 |
4 |
4.5 |
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
;
(Ⅲ)请你估计该同学第8年的年收入约是多少?
(参考公式:)
(本小题满分13分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 |
PM2.5(微克/立方米) |
频数(天) |
频 率 |
第一组 |
(0,15] |
4 |
0.1 |
第二组 |
(15,30] |
12 |
![]() |
第三组 |
(30,45] |
8 |
0.2 |
第四组 |
(45,60] |
8 |
0.2 |
第五组 |
(60,75] |
![]() |
0.1 |
第六组 |
(75,90) |
4 |
0.1 |
(Ⅰ)试确定的值,并写出该样本的众数和中位数(不必写出计算过程);
(Ⅱ)完成相应的频率分布直方图.
(Ⅲ)求出样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.
(本小题满分13分)
(Ⅰ)已知扇形的面积为,弧长为
,求该扇形的圆心角(用弧度制表示);
(Ⅱ)在平面直角坐标系中,角的终边在直线
上,求
的值.