解下列方程(每小题5分,共10分)
①. ②
一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出1个球,记录下颜色后放回袋中并搅匀,再从中任意摸出1个球。请用画树状图的方法列出所有可能的结果,并写出两次摸出的球颜色相同的概率。
(11·珠海)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,
AD=AB=1,BC=2.将点A折叠到CD边上,记折叠后A点对应的点为P(P与D点不重
合),折痕EF只与边AD、BC相交,交点分别为E、F.过点P作PN∥BC交AB于N、交
EF于M,连结PA、PE、AM,EF与PA相交于O.
(1)指出四边形PEAM的形状(不需证明);
(2)记∠EPM=a,△AOM、△AMN的面积分别为S1、S2.
(11·珠海)已知:如图,锐角△ABC内接于⊙O,∠ABC=45°;
点D是上一点,过点D的切线DE交AC的延长线于点E,且DE∥BC;连结AD、BD、
BE,AD的垂线AF与DC的延长线交于点F.
(1)求证:△ABD∽△ADE;
(2)记△DAF、△BAE的面积分别为S△DAF、S△BAE,求证:S△DAF>S△BAE.
(11·珠海)阅读材料:
(11·珠海)如图,将一个钝角△ABC(其中∠ABC=120°)绕
点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连结AA1.
(1)写出旋转角的度数;
(2)求证:∠A1AC=∠C1.