已知点B(5,0)和点C(-5,0),过点B的直线l与过点C的直线m相交于点A,设直线l的斜率为k1,直线m的斜率为k2:
(Ⅰ)如果k1·k2=,求点A的轨迹方程;
(Ⅱ)如果k1·k2=a,其中a≠0,求点A的轨迹方程,并根据a的取值讨论此轨迹是何种曲线.
已知函数和点
,过点
作曲线
的两条切线
、
,切点分别为
、
.
(Ⅰ)设,试求函数
的表达式;
(Ⅱ)是否存在,使得
、
与
三点共线.若存在,求出
的值;若不存在,请说明理由.
(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数,在区间
内总存在
个实数
,
,使得不等式
成立,求
的最大值.
若存在实常数和
,使得函数
和
对其定义域上的任意实数
分别满足:
和
,则称直线
为
和
的“隔离直线”.已知
,
(其中
为自然对数的底数).
(1)求的极值;
(2) 函数和
是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知直线相交于A、B两点,M是线段AB上的一点,
,且点M在直线
上.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若椭圆的焦点关于直线的对称点在单位圆
上,求椭圆的方程.
设曲线C:的离心率为
,右准线
与两渐近线交于P,Q两点,其右焦点为F,且△PQF为等边三角形。
(1)求双曲线C的离心率;
(2)若双曲线C被直线截得弦长为
,求双曲线方程;
(3)设双曲线C经过,以F为左焦点,为
左准线的椭圆的短轴端点为B,求BF 中点的轨迹N方程。
如图,平面直角坐标系中,
和
为两等腰直角三角形,
,C(a,0)(a>0).设
和
的外接圆圆心分别为
,
.
(Ⅰ)若⊙M与直线CD相切,求直线CD的方程;
(Ⅱ)若直线AB截⊙N所得弦长为4,求⊙N的标准方程;
(Ⅲ)是否存在这样的⊙N,使得⊙N上有且只有三个点到直线AB的距离为,若存在,求此时⊙N的标准方程;若不存在,说明理由.