设函数
,其中
.
(1)求函数
的定义域
(用区间表示);
(2)讨论函数
在
上的单调性;
(3)若
,求
上满足条件
的
的集合(用区间表示).
已知椭圆
的一个焦点为
,离心率为
.
(1)求椭圆
的标准方程;
(2)若动点
为椭圆外一点,且点
到椭圆
的两条切线相互垂直,求点
的轨迹方程.
设数列
的前
项和为
,满足
,
,且
.
(1)求
、
、
的值;
(2)求数列
的通项公式.
如图,四边形
为正方形,
平面
,
,
于点
,
,交
于点
.
(1)证明:
平面
;
(2)求二面角
的余弦值.
随机观测生产某种零件的某工厂名工人的日加工零件数(单位:件),获得数据如下:
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
,根据上述数据得到样本的频率分布表如下:
分组 |
频数 |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
(1)确定样本频率分布表中
的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取人,至少有
人的日加工零件数落在区间
的概率.