(本小题满分16分,第1小题满分6分,第2小题满分10分)
已知
(1) 时,求
的值域;
(2) 时,
的最大值为M,最小值为m,且满足:
,求b的取值范围.
设函数.
(1)求的最小正周期和值域;
(2)在锐角△中,角
的对边分别为
,若
且
,
,求
和
.
设,
且
,其中当
为偶数时,
;当
为奇数时,
.
(1)证明:当,
时,
;
(2)记,求
的值.
甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.
已知函数,若函数
的图象恒在
轴上方,求实数
的取值范围.
在平面直角坐标系中,圆的参数方程为
,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.求:
(1)圆的直角坐标方程;
(2)圆的极坐标方程.