某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
【2015高考新课标2,理19】
如图,长方体中,
,
,
,点
,
分别在
,
上,
.过点
,
的平面
与此长方体的面相交,交线围成一个正方形.
(Ⅰ)在图中画出这个正方形(不必说出画法和理由);
(Ⅱ)求直线与平面
所成角的正弦值.
【2015高考上海,理21】已知椭圆,过原点的两条直线
和
分别于椭圆交于
、
和
、
,记得到的平行四边形
的面积为
.
(1)设,
,用
、
的坐标表示点
到直线
的距离,并证明
;
(2)设与
的斜率之积为
,求面积
的值.
【2015高考湖南,理20】已知抛物线的焦点
也是椭圆
的一个焦点,
与
的公共弦的长为
.
(1)求的方程;
(2)过点的直线
与
相交于
,
两点,与
相交于
,
两点,且
与
同向
(ⅰ)若,求直线
的斜率
(ⅱ)设在点
处的切线与
轴的交点为
,证明:直线
绕点
旋转时,
总是钝角三角形
【2015高考北京,理19】已知椭圆:
的离心率为
,点
和点
都在椭圆
上,直线
交
轴于点
.
(Ⅰ)求椭圆的方程,并求点
的坐标(用
,
表示);
(Ⅱ)设为原点,点
与点
关于
轴对称,直线
交
轴于点
.问:
轴上是否存在点
,使得
?若存在,求点
的坐标;若不存在,说明理由.
【2015高考新课标1,理20】在直角坐标系中,曲线C:y=
与直线
(
>0)交与M,N两点,
(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.