(本小题满分14分)
已知数列{an}中,a1 =1,前 n项和为Sn,且点(an,an+1)在直线x-y+1=0上.
计算+
+
+…
已知点P与定点F的距离和它到定直线l:
的距离之比是1 : 2.
(1)求点P的轨迹C方程;
(2)过点F的直线交曲线C于A, B两点, A, B在l上的射影分别为M, N.
求证AN与BM的公共点在x轴上.
已知双曲线G的中心在原点,它的渐近线与圆相切,过点P(-4,0)作斜率为
的直线l,使得l和G交于A、B两点,和y轴交于点C,并且点P在线段AB上,又满足
(1)求双曲线G的渐近线方程
(2)求双曲线G的方程
(3)椭圆S的中心在原点,它的短轴是G的实轴,如果S中垂直于l的平行弦的中点轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程。
设动点到定点
的距离比它到
轴的距离大
.记点
的轨迹为曲线
(1)求点的轨迹方程;
(2)设圆过
,且圆心
在
的轨迹上,
是圆
在
轴上截得的弦,当
运动时弦长
是否为定值?请说明理由.
设椭圆的离心率为
=
,点
是椭圆上的一点,且点
到椭圆
两焦点的距离之和为4.
(1)求椭圆的方程;
(2)椭圆上一动点
关于直线
的对称点为
,求
的取值范围.
如图,已知直线的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线
上的射影依次为点D,K,E.
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)对于(1)中的椭圆C,若直线L交y轴于点M,且,当m变化时,求
的值;
(3)连接AE,BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由.