(本小题满分12分)
已知点,点A、B分别在x轴负半轴和y轴上,且
,点
满足
,当点B在y轴上移动时,记点C的轨迹为E。
(1)求曲线E的方程;
(2)过点Q(1,0)且斜率为k的直线交曲线E于不同的两点M、N,若D(
,0),且
·
>0,求k的取值范围。
(本小题满分10分)
在平面直角坐标系xOy中,已知点,P是动点,且三角形POA的三边所在直线的斜
率满足kOP+kOA=kPA.
(1)求点P的轨迹C的方程;
(2)若Q是轨迹C上异于点P的一个点,且,直线OP与QA交于点M,问:是否存在点P使得△PQA和△PAM的面积满足
?若存在,求出点P的坐标;若不存在,说明理由.
B选修4-4:坐标系与参数方程(本小题满分10分)
在直角坐标系中,直线
的参数方程为
(
为参数),若以直角坐标系
的
点为极点,
为极轴,且长度单位相同,建立极坐标系,得曲线
的极坐标方程为
.
(1)求直线的倾斜角;
(2)若直线与曲线
交于
两点,求
.
A选修4-2:矩阵与变换(本小题满分10分)
已知矩阵,向量
.求向量
,使得
.
(本小题满分16分)
已知函数(其中
为自然对数的底数),
.
(1)若,
,求
在
上的最大值;
(2)若时方程
在
上恰有两个相异实根,求
的取值范围;
(3)若,
,求使
的图象恒在
图象上方的最大正整数
.
[注意:]
(本小题满分16分)
已知数列是各项均不为
的等差数列,公差为
,
为其前
项和,且满足
,
.数列
满足
,
为数列
的前n项和.
(1)求数列的通项公式
和数列
的前n项和
;
(2)若对任意的,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.