(本小题满分13分)
我校要用三辆汽车把高二文科学生从学校送到古田参加社会实践活动,已知学校到古田有两条公路,汽车走公路①堵车的概率为,不堵车的概率为
;汽车走公路②堵车的概率为
,不堵车的概率为
.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响
(I)若三辆汽车中恰有一辆汽车被堵的概率为,求汽
车走公路②堵车的概率P。
(II)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望。
等比数列 的各项均为正数,且
(1)求数列
的通项公式;
(2)设
求数列
的前
项和.
设函数
定义在
上,
,导函数
,
.
(1)求
的单调区间和最小值;
(2)讨论
与
的大小关系;
(3)是否存在
,使得
对任意
成立?若存在,求出
的取值范围;若不存在,请说明理由.
如图,
地到火车站共有两条路径
和
,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:
时间(分钟) |
10![]() |
20![]() |
30![]() |
40![]() |
50![]() |
的频率 |
|||||
的频率 |
0 |
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?
(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望 .
如图,从点
作
轴的垂线交曲线
于点
,曲线在
点处的切线与
轴交于点
.再从
做
轴的垂线交曲线于点
,依次重复上述过程得到一系列点:
;
;…;
,
记
点的坐标为
(
).
(1)试求
与
的关系(
);
(2)求
.
叙述并证明余弦定理.