(本小题满分l2分) 设椭圆的焦点分别为,直线交轴于点,且. (Ⅰ)试求椭圆的方程; (Ⅱ)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.
求抛物线被点所平分的弦的直线方程。
若点在抛物线上,点在圆上,求的最小值。
已知是上的点,是抛物线的焦点,求证:。
是抛物线上两点,满足(为坐标原点),求证(1)两点的横坐标之积、纵坐标之积分别为定值;(2)直线过一定点。
抛物线的顶点在原点,焦点是圆的圆心,(1)求抛物线的方程;(2)直线的斜率为,且过抛物线的焦点,若与抛物线、圆依次交于四个点,求。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号