如图,直角梯形ABCD,∠,AD∥BC,AB=2,AD=
,BC=
椭圆F以A、B为焦点且过点D,
(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
(Ⅱ)若点E满足
,是否存在斜率
两点,且
,若存在,求K的取值范围;若不存在,说明理由。
要制作一个由同底圆锥和圆柱组成的储油罐(如图),设计要求:圆锥和圆柱的总高度和圆柱底面半径相等,都为米.市场上,圆柱侧面用料单价为每平方米
元,圆锥侧面用料单价分别是圆柱侧面用料单价和圆柱底面用料单价的4倍和2倍.设圆锥母线和底面所成角为
(弧度),总费用为
(元).
(1)写出的取值范围;(2)将
表示成
的函数关系式;
(3)当为何值时,总费用
最小?
已知集合.
(1)是否存在实数,使得集合
中所有整数
的元素和为28?若存在,求出符合条件的
,若不存在,请说明理由。
(2)若以为首项,
为公比的等比数列前
项和记为
,对于任意的
,均有
,求
的取值范围。
已知.
(1)求函数的图像在
处的切线方程;
(2)设实数,求函数
在
上的最大值
(3)证明对一切,都有
成立.
如图,在矩形中,
,以
为圆心1为半径的圆与
交于
(圆弧
为圆在矩形内的部分)
(1)在圆弧上确定
点的位置,使过
的切线
平分矩形ABCD的面积;
(2)若动圆与满足题(1)的切线
及边
都相切,试确定
的位置,使圆
为矩形内部面积最大的圆.
(本小题满分15分)平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含的式子表示);
(2)已知椭圆(其中
)的左、右顶点分别为D、B,
⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.