已知函数
(1)求函数
的极值;
(2)设函数
若函数
在
上恰有两个不同零点,求实数
的取值范围.
已知椭圆
的右焦点为F2(1,0),点
在椭圆上.
(1)求椭圆方程;
(2)点
在圆
上,M在第一象限,过M作圆
的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.
如图,在四棱锥P ABCD中,侧面PAD⊥底面ABCD,侧棱
,
,底面
为直角梯形,其中BC∥AD, AB⊥AD,
,O为AD中点.
(1)求直线
与平面
所成角的余弦值;
(2)求
点到平面
的距离;
(3)线段
上是否存在一点
,使得二面角
的余弦值为
?若存在,求出
的值;若不存在,请说明理由.
已知数列
的前
项和为
,数列
满足:
。
(1)求数列
的通项公式
;
(2)求数列
的通项公式
;(3)若
,求数列
的前
项和
.
经销商经销某种农产品,在一个销售季度内,每售出
t该产品获利润
元,未售出的产品,每
t亏损
元。根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示。经销商为下一个销售季度购进了
t该农产品,以
(单位:t,
)表示下一个销售季度内的市场需求量,
(单位:元)表示下一个销售季度内销商该农产品的利润。
(1)将
表示为
的函数;
(2)根据直方图估计利润
不少于57000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若
,则取
,且
的概率等于需求量落入
的概率),求利润
的数学期望.
已知F1,F2分别为椭圆C1:
=1(a>b>0)的上下焦点,其中F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
.
(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足
,求实数λ的取值范围.