已知椭圆
的右焦点为F2(1,0),点
在椭圆上.
(1)求椭圆方程;
(2)点
在圆
上,M在第一象限,过M作圆
的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.
已知函数
,其中
,
,在
中,
分别是角
的对边,且
,
(1)求角
;(2)若
,
,求
的面积.
已知函数
为常数,
(1)当
时,求函数
在
处的切线方程;
(2)当
在
处取得极值时,若关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(3)若对任意的
,总存在
,使不等式
成立,求实数
的取值范围。
椭圆
:
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线
与椭圆交于
两点,与抛物线交于
两点,且
。
(1)求椭圆
的方程;
(2)若过点
的直线与椭圆
相交于两点
,设
为椭圆
上一点,且满足
为坐标原点),当
时,求实数
的取值范围。
(本小题满分14分)
在四棱锥
中,
//
,
,
,
平面
,
. 
(Ⅰ)设平面
平面
,求证:
//
;
(Ⅱ)求证:
平面
;
(Ⅲ)设点
为线段
上一点,且直线
与平面
所成角的正弦值为
,求
的值.
已知三个正整数
按某种顺序排列成等差数列。
(1)求
的值;
(2)若等差数列
的首项、公差都为
,等比数列
的首项、公比也都为
,前
项和分别为
,且
,求满足条件的正整数
的最大值。