(本小题满分14分)已知数列{an}中,a1=t(t∈R,且t≠0,1),a2=t2,且当x=t时,函数f(x)=(an-an-1)x2-(an+1-an)x(n≥2,n∈N)取得极值.(Ⅰ)求证:数列{an+1-an}是等比数列;(Ⅱ)若bn=anln|an|(n∈N),求数列{bn}的前n项和Sn;(Ⅲ)当t=-时,数列{bn}中是否存在最大项?如果存在,说明是第几项;如果不存在,请说明理由.
已知正项数列的前项和为,对任意,有. (1)求数列的通项公式; (2)令,设的前项和为,求证:
已知函数 ⑴解不等式; ⑵设函数,若不等式恒成立,求实数的取值范围.
已知曲线,直线(t为参数). (1)写出曲线C的参数方程,直线的普通方程; (2)过曲线C上任意一点P作与夹角为30°的直线,交于点A,求|PA|的最大值与最小值.
如图,圆周角的平分线与圆交于点,过点的切线与弦的延长线交于点,交于点. (1)求证:; (2)若四点共圆,且弧与弧相等,求.
已知函数,,其中,是自然对数的底数. (1)当时,为曲线的切线,求的值; (2)若,,且函数在区间内有零点,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号