如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1中点.
(1)求证:A1D⊥平面BB1C1C;
(2)求证:AB1∥平面A1DC;
(3)求二面角D-A1C-A的余弦值.
已知直线l经过点P(1,1),倾斜角为,且tan
=
(1)写出直线l的一个参数方程;
(2)设l与圆x2+y2=4相交于两点A,B,求点P到A,B两点的距离之积.
(普通班做)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2两个交点的直线的直角坐标方程.
设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为
,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求
的分布列及期望。
某研究机构对高三学生的记忆力x和判断力y进行统计分析,所得数据如表所示:
x |
6 |
8 |
10 |
12 |
y |
2 |
3 |
5 |
6 |
画出上表数据的散点图为:
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=
x+
.
(2)试根据(1)求出的线性回归方程,预测记忆力为9的学生的判断力
( 其中 ,
)
如图,在直角坐标系中,圆
与
轴负半轴交于点
,过点
的直线
,
分别与圆
交于
,
两点.
(1)若,
,求△
的面积;
(2)过点作圆O的两条切线,切点分别为E,F,求
;
(3)若,求证:直线
过定点.