(本小题满分12分)
已知点及圆
:
.
(1)若直线过点
且与圆心
的距离为1,求直线
的方程;
(2)设过点P的直线与圆
交于
、
两点,当
时,求以线段
为直径的圆
的方程;
(3)设直线
与圆
交于
,
两点,是否存在实数
,使得过点
的直线
垂直平分弦
?若存在,求出实数
的值;若不存在,请说明理由.
已知函数在
上为增函数,在
上为减函数,且方程
的三个根分别为
。
(1)求实数的取值范围;
(2)求的取值范围。
、
、
为
内角,
为
外接圆半径,
为
内切圆半径。
(1)求证:;
(2)求证:。
如图,正方形所在的平面与平面
垂直,
是
和
交点,
且
.
(1)求证:⊥平面
;
(2)求直线与平面
所成角的大小;
甲乙两位学生参加数学竞赛培训,在培训期间他们参加5次预赛成绩记录如下:
甲: 78 76 74 90 82
乙: 90 70 75 85 80
(1)用茎叶图表示这两组数据;
(2)从甲乙两人成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
已知函数
(1)若函数在
上为增函数,求实数
的取值范围;
(2)当时,求
在
上的最大值和最小值;
(3)当时,求证对任意大于1的正整数
,
恒成立.