(本小题满分12分)如图,为矩形,
为梯形,平面
平面
,
,
,
.
(Ⅰ)若为
中点,求证:
平面
;
(Ⅱ)求平面与
所成锐二面角的余弦值.
已知双曲线的离心率为
,左、右焦点分别为
、
,一条准线的方程为
.
(1)求双曲线的方程;
(2)若双曲线上的一点
满足
,求
的值;
(3)若直线与双曲线
交于不同的两点
,且
在以
为圆心的圆上,求实数
的取值范围.
已知函数.
(1)当时,求
的单调递增区间;
(2)是否存在,使得对任意的
,都有
恒成立.若存在,求出
的取值范围; 若不存在,请说明理由.
已知等差数列{}前
项和为
,且
(1)求数列{}的通项公式
(2)若,求数列
的前
项和
已知函数f(x)=xm+ax的导函数f′(x)=2x+1,,点An(n, Sn)在函数y="f(x)" (n∈N*)的图像上 ,
(1)求证:数列为等差数列;
(2)设,求数列
的前
项和
已知抛物线和直线
没有公共点(其中
、
为常数),动点
是直线
上的任意一点,过
点引抛物线
的两条切线,切点分别为
、
,且直线
恒过点
.
(1)求抛物线的方程;
(2)已知点为原点,连结
交抛物线
于
、
两点,
证明: