(本小题满分14分)
建造一容积为8深为2m的长方体形无盖水池,每
池底和池壁造价各为120元和80元.
(1)求总造价关于一边长x的函数解析式,并指出该函数的定义域;
(2)判断(1)中函数在和
上的单调性;
(3)如何设计水池尺寸,才能使总造价最低;
已知等差数列
的公差为2,前
项和为
,且
成等比数列.
(Ⅰ)求数列
的通项公式;
(Ⅱ)令
,求数列
的前
项和
.
乒乓球台面被球网分成甲、乙两部分,如图,甲上有两个不相交的区域
,乙被划分为两个不相交的区域
.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在
上记3分,在
上记1分,其它情况记0分.对落点在
上的来球,队员小明回球的落点在
上的概率为
,在
上的概率为
;对落点在
上的来球,小明回球的落点在
上的概率为
,在
上的概率为
.假设共有两次来球且落在
上各一次,小明的两次回球互不影响.求:
(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和
的分布列与数学期望.
如图,在四棱柱
中,底面
是等腰梯形,
是线段
的中点.
(Ⅰ)求证:
;
(Ⅱ)若
垂直于平面
且
,求平面
和平面
所成的角(锐角)的余弦值.
已知向量
,
,设函数
,且
的图象过点
和点
.
(Ⅰ)求
的值;
(Ⅱ)将
的图象向左平移
个单位后得到函数
的图象.若
的图象上各最高点到点
的距离的最小值为
,求
的单调增区间.
随机将 这 个连续正整数分成 两组,每组 个数, 组最小数为 ,最大数为 ; 组最小数为 ,最大数为 ,记
(1)当
时,求
的分布列和数学期望;
(2)令
表示事件
与
的取值恰好相等,求事件
发生的概率
;
(3)对(2)中的事件
,
表示
的对立事件,判断
和
的大小关系,并说明理由。