(本小题满分12分)
已知,过点
作直线与抛物线交于两点,若两点纵坐标之积为
.
(1)求抛物线方程;
(2)斜率为的直线不经过点
且与抛物线交于
(Ⅰ)求直线在
轴上截距
的取值范围;
(Ⅱ)若分别与抛物线交于另一点
,证明:
交于一定点
.
设函数,
.
(1) 若曲线在点
处的切线与直线
垂直,求
的单调递减区间和极小值(其中
为自然对数的底数);
(2)若对任意,
恒成立,求
的取值范围.
已知抛物线
(1)若点是抛物线
上一点,求证过点
的抛物线
的切线方程为:
;
(2)点是抛物线
准线上一点,过点
作抛物线的两条切线,切点分别为
,求
的最小值,并求相应的点
的坐标.
某种产品的广告费支出与销售额
(单位:万元)之间有如下对应数据:
![]() |
![]() |
![]() |
![]() |
![]() |
8 |
![]() |
30 |
40 |
60 |
50 |
70 |
若广告费支出与销售额
回归直线方程为
.
(1)试预测当广告费支出为12万元时,销售额是多少?
(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=45°,PD⊥平面ABCD,PD=AD=1,点E为AB上一点,且,点F为PD中点.
(Ⅰ)若,求证:直线AF
平面PEC ;
(Ⅱ)是否存在一个常数,使得平面PED⊥平面PAB,若存在,求出
的值;若不存在,说明理由,
在中,角
所对的边分别为
,已知
,
(1)求的大小;
(2)若,求
的取值范围.