.(本小题满分12分)
在直角坐标系中,椭圆
的左、右焦点分别为
. 其中
也是抛物线
的焦点,点
为
与
在第一象限的交点,且
(Ⅰ)求的方程;
(Ⅱ)若过点的直线
与
交于不同的两点
.
在
之间,试求
与
面积之比的取值范围.(O为坐标原点)
已知数列满足
,前n项和为Sn,Sn=
.
(1)求证:是等比数列;
(2)记,当
时是否存在正整数m,都有
?如果存在,求出m的值;如果不存在,请说明理由.
从标有1,2,3,…,7的7个小球中取出一个球,记下它上面的数字,放回后再取出一个球,记下它上面的数字,然后把两球上的数字相加,求取出两球上的数字之和大于11或者能被4整除的概率.
在如图所示的几何体中,四边形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形.
(1)求证:平面DEC⊥平面BDE;
(2)求二面角C—BE—D的余弦值.
已知向量。
(1)求的最小正周期和单调减区间;
(2)将函数的图象向右平移
个单位,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数
的图象,在△ABC中,角A、B、C的对边分别为
,若
,求
的值.
已知数列是等差数列,
是等比数列,
。
(1)求数列、
的通项公式;
(2)设数列中,
,求数列
的前n项和Sn.