( (本小题满分12分)设椭圆的离心率为,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.(1)求椭圆的方程;(2)椭圆上一动点,关于直线的对称点为,求的取值范围.
已知在上是单调增函数,则的最大值是( )
已知,若存在互不相等的正整数…,使得…同时小于,则记为满足条件的的最大值. (1)求的值; (2)对于给定的正整数, (ⅰ)当时,求的解析式; (ⅱ)当时,求的解析式.
如图,在直三棱柱ABC—A1B1C1中,AC = 3,BC = 4,AB = 5,AA1 = 4. (1)设,异面直线AC1与CD所成角的余弦值为,求的值; (2)若点D是AB的中点,求二面角D—CB1—B的余弦值.
已知正实数满足,求证:.
在平面直角坐标系中,已知直线与椭圆的一条准线的交点位于轴上,求实数的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号