如图,两块直角三角板拼在一起,已知,
.
(1)若记,
,试用
,
表示向量
、
;
(2)若,求
.
设函数,
为常数
.
(1)若的图象中相邻两对称轴之间的距离不小于
,求
的取值范围;
(2)若的最小正周期为
,且当
时,
的最大值是
,又
,求
的值.
已知在同一平面内,且
.
(1)若,且
,求
的值;
(2)若,且
,求向量
与
的夹角.
一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同.
(1)求搅匀后从中任意摸出1个球,恰好是红球的概率;
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,求至少有一次摸出的球是红球的概率.
在等差数列中,
,
.令
,数列
的前
项和为
.
(1)求数列的通项公式;
(2)求数列的前
项和
;
(3)是否存在正整数,
(
),使得
,
,
成等比数列?若存在,求出所有的
,
的值;若不存在,请说明理由.