(本小题满分12分)
对于定义在区间D上的函数,若存在闭区间
和常数
,使得对任意
,都有
,
且对任意∈D,当
时,
恒成立,则称函数
为区间D上的“平底型”函数.
(Ⅰ)判断函数和
是否为R上的“平底型”函数?并说明理由;
如图,在四棱锥中,平面
平面
,
,
是等边三角形,已知
.
(1)设是
上的一点,证明:平面
平面
;
(2)求二面角的余弦值.
为了解今年某校高三毕业班准备报考飞行员学生体重情况,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为,其中第二小组的频数为12.
(1)求该校报考飞行员的总人数;
(2)以这所学校的样本来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求
的分布列和数学期望.
已知等差数列的前
项和为
,公差
,且
,
成等比数列.
(1)求数列的通项公式;
(2)设是首项为1公比为3 的等比数列,求数列
前
项和
.
已知.
(1)当时,求曲线
在点
处的切线方程;
(2)若在
处有极值,求
的单调递增区间;
(3)是否存在实数,使
在区间
的最小值是3,若存在,求出
的值;若不存在,说明理由.
若的图象关于直线
对称,其中
(1)求的解析式;
(2)将的图象向左平移
个单位,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后得到
的图象;若函数
的图象与
的图象有三个交点且交点的横坐标成等比数列,求
的值.