四.附加题(本小题满分8分)
设复数与复平面
上点P(x,y)对应,且复数
满足条件
|a(其中n
.常数a
当n为奇数时
,动点P(x,y)的轨迹为C1, 当n为偶数时,动点P(x,y)的轨迹为C2,且两条曲线都经过
点D(2,
),求轨迹C1 与C2的方程?
设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y), f(2)=1,
(1).求f(1)的值;
(2).求f(8)的值.
(3).如果f(4)+f(x-2)<2,求x的取值范围。
已知函数
(1).试判断并证明该函数的奇偶性。
(2).证明函数f(x)在上是单调递增的。
①求函数y=x+的值域.;
②作函数y=|-x2+2x+3|的图象,并写出它的单调区间及单调性。
已知A={1,2,x2-5x+9},B={3,x2+ax+a},如果A={1,2,3},2∈B,求实数a的值.
设函数,其中
为常数.
(1)证明:对任意,
的图象恒过定点;
(2)当时,判断函数
是否存在极值?若存在,证明你的结论并求出所有
极值;若不存在,说明理由.