选做题.(本小题满分10分.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.)
.在中,已知
是
的角平分线,
的外接圆交
于点
,
.求证:
.
已知,且
(
),设
与
的夹角为
(1)求与
的函数关系式;
(2)当取最大值时,求
满足的关系式.
如图,在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2
,再继续前进10
m至D点,测得顶端A的仰角为4
,求建筑物AE的高度。
在△ABC中,是角
所对的边,且
.
(1)求角的大小;(2)若
,求△ABC周长的最大值。
定义:已知函数与
,若存在一条直线
,使得对公共定义域内的任意实数均满足
恒成立,其中等号在公共点处成立,则称直线
为曲线
与
的“左同旁切线”.已知
.
(1)试探求与
是否存在“左同旁切线”,若存在,请求出左同旁切线方程;若不存在,请说明理由.
(2)设是函数
图象上任意两点,
,且存在实数
,使得
,证明:
.
李先生家住小区,他工作在
科技园区,从家开车到公司上班路上有
、
两条路线(如图),
路线上有
、
、
三个路口,各路口遇到红灯的概率均为
;
路线上有
、
两个路口,各路口遇到红灯的概率依次为
,
.
(Ⅰ)若走路线,求最多遇到1次红灯的概率;
(Ⅱ)若走路线,求遇到红灯次数
的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.