(本小题满分12分)
已知椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从它们每条曲线上至少取两个点,将其坐标记录于下表中:
x |
5 |
-![]() |
4 |
![]() |
![]() |
y |
2![]() |
0 |
-4 |
![]() |
-![]() |
(Ⅰ)求C1和C2的方程;
(Ⅱ)过点S(0,-)且斜率为k的动直线l交椭圆C1于A、B两点,在y轴上是否存在定点D,使以线段AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.
已知的展开式前三项中的
的系数成等差数列.
(1)展开式中所有的的有理项为第几项?
(2)求展开式中系数最大的项.
为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
药物效果试验列联表
患病 |
未患病 |
总计 |
|
没服用药 |
20 |
30 |
50 |
服用药 |
x |
y |
50 |
总计 |
M |
N |
100 |
设从没服用药的动物中任取两只,未患病数为X;从服用药物的动物中任取两只,未患病数为Y,工作人员曾计算过P(X=0)=P(Y=0).
(1)求出列联表中数据x,y,M,N的值;
(2)能够有多大的把握认为药物有效?
(3)现在从该100头动物中,采用随机抽样方法每次抽取1头,抽后返回,抽取5次, 若每次抽取的结果是相互独立的,记被抽取的5头中为服了药还患病的数量为.,求
的期望E(
)和方差D(
).
参考公式:(其中
)
P(K2≥k) |
0.25 |
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
k |
1.323 |
2.072 |
2.706 |
3.845 |
6.635 |
7.879 |
在1,2,3,…,9这9个自然数中,任取3个数,
(1)记Y表示“任取的3个数中偶数的个数”,求随机变量Y的分布列及其期望;
(2)记X为3个数中两数相邻的组数,例如取出的数为1,2,3,则有这两组相邻的数1,2和2,3,此时X的值为2,求随机变量X的分布列及其数学期望E(X).
某班有6名班干部,其中男生4人,女生2人,任选选3人参加学校的义务劳动。
(1)求男生甲或女生乙被选中的概率
(2)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(A)和P(B︱A)。
已知函数(
),该函数所表示的曲线上的一个最高点为
,由此最高点到相邻的最低点间曲线与x轴交于点(6,0)。
(1)求函数解析式;
(2)求函数的单调区间;
(3)若,求
的值域。