.已知
(Ⅰ)如果函数的单调递减区间为
,求函数
的解析式;
(Ⅱ)对一切的,
恒成立,求实数
的取值范围
(本小题满分10分)关于某设备的使用年限x和所支出的维修费用(万元),有统计数据
,由资料知
对
呈线性相关,并且统计的五组数据的平均值分别为
,
,若用五组数据得到的线性回归方程
去估计,使用8年的维修费用比使用7年的维修费用多1.1万元.
(1)求回归直线方程;
(2)估计使用年限为10年时,维修费用是多少?
过点A(8,6)引三条直线l1、l2、l3,它们的倾斜角之比为1∶2∶4,若直线l2的方程是y=x,求直线l1、l3的方程
在平面直角坐标系中,点
,直线
。设圆
的半径为
,圆心在
上。(1)若圆心
也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围。
某初级中学共有学生2 000名,各年级男、女生人数如下表:
初一年级 |
初二年级 |
初三年级 |
|
女生 |
373 |
![]() |
![]() |
男生 |
377 |
370 |
![]() |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
(1)求x的值.
(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.
为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:;
;
;
;
;
;
;
;
;
(1)完成频率分布表,并画出频率分布直方图以及频率分布折线图;
(2)据上述图表,估计数据落在范围内的可能性是百分之几?
(3)数据小于11.20的可能性是百分之几?