游客
题文

已知椭圆()过点,其左、右焦点分别为,且

(1)求椭圆的方程;
(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点
面积的最大值.

如图,已知菱形的边长为,.将菱形沿对角线折起,使,得到三棱锥.
(Ⅰ)若点是棱的中点,求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点是线段上一个动点,试确定点的位置,使得,并证明你的结论

已知函数.
(Ⅰ)求函数的定义域;
(Ⅱ)若,求的值

定义为有限项数列的波动强度.
(Ⅰ)当时,求
(Ⅱ)若数列满足,求证:
(Ⅲ)设各项均不相等,且交换数列中任何相邻两项的位置,都会使数列的波动强度增加,求证:数列一定是递增数列或递减数列

已知抛物线的焦点为,过的直线交轴正半轴于点,交抛物线于两点,其中点在第一象限.
(Ⅰ)求证:以线段为直径的圆与轴相切;
(Ⅱ)若,,,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号