已知椭圆的右焦点为F2(1,0),点在椭圆上。(I)求椭圆方程;(II)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由。
已知椭圆G:(a>b>0)的离心率为,右焦点为(,0).斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2). (1)求椭圆G的方程; (2)求△PAB的面积.
已知数列是等比数列,,,数列的前项和满足. (Ⅰ)求数列和的通项公式; (Ⅱ)若,求数列的前项和.
正项数列满足. (1)求数列的通项公式; (2)令,求数列的前项和.
给定两个命题,p:对任意实数都有恒成立;q:关于的方程有实数根;若为真,为假,求实数的取值范围.
已知集合,集合 (1)求集合; (2)若,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号