在东西方向的海岸线,上有一长为1km的码头MN(如图,MN=lkm),在码头西端M的正西19.5 km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西3000,且与A相距40km的B处;经过l小时20分钟,又测得该轮船位于A的北偏东6000方向,且与A相距km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为 .
运行区间 |
票价 |
||
起点站 |
终点站 |
一等座 |
二等座 |
都匀 |
桂林 |
95(元 |
60(元 |
(1)参加社会实践活动的老师、家长代表与学生各有多少人?
(2)由于各种原因,二等座单程火车票只能买 张 参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用 与 之间的函数关系式.
(3)在(2)的方案下,请求出当 时,购买单程火车票的总费用.
如图, 是 的直径,点 是 上一点,且 , 与 交于点 .
(1)求证: 是 的切线;
(2)若 平分 ,求证: ;
(3)在(2)的条件下,延长 、 交于点 ,若 , ,求 的长.
已知二次函数 的图象与 轴交于点 ,与 轴的一个交点坐标是 .
(1)求二次函数的解析式,并写出顶点 的坐标;
(2)将二次函数的图象沿 轴向左平移 个单位长度,当 时,求 的取值范围.
为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为: .唐诗; .宋词; .论语; .三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
“2016国际大数据产业博览会”于5月25日至5月29日在贵阳举行.参展内容为: 经济和社会发展; 产业与应用; 技术与趋势; 安全和隐私保护; 电子商务,共五大板块,为了解观众对五大板块的“关注情况”,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:
(1)本次随机调查了多少名观众?
(2)请补全统计图,并求出扇形统计图中“ 安全和隐私保护”所对应的扇形圆心角的度数.
(3)据相关报道,本次博览会共吸引力90000名观众前来参观,请估计关注“ 电子商务”的人数是多少?