平面直角坐标系有点
(1)求向量
的夹角
的余弦用x表示的函数
;
(2)求
的最值、
(本小题满分14分)
已知数列
中,
,
,
为该数列的前
项和,且
.
(1)求数列
的通项公式;
(2)若不等式
对一切正整数
都成立,求正整数
的最大值,并证明结论.
(本小题共14分)如图,四棱锥
中,底面
为平行四边形,
,
,
⊥底面
.
(1)证明:平面
平面
;
(2)若二面角
为
,求
与平面
所成角的正弦值。
(本小题满分12分)
一个口袋内有
(
)个大小相同的球,其中有3个红球和
个白球.已知从口袋中随机取出一个球是红球的概率是
.
(1)当
时,不放回地从口袋中随机取出3个球,求取到白球的个数
的期望
;
(2)若
,有放回地从口袋中连续地取四次球(每次只取一个球),在四次摸球中恰好取到两次红球的概率大于
,求
和
.
(本小题满分12分)
在
中,角
的对边分别为
,
是该三角形的面积,
(1)若
,
,
,求角
的度数;
(2)若
,
,
,求
的值.
(本小题满分14分)
已知函数
(Ⅰ)当
时,解不等式
>
;
(Ⅱ)讨论函数
的奇偶性,并说明理由.