|
对某电子元件进行寿命追踪调查,情况如下:
寿命(h)![]() |
100—200 |
200—300 |
300—400 |
400—500 |
500—600 |
个数 |
20 |
30 |
80 |
40 |
30 |
(1)列出频率分布表:
(2)画频率分布直方图;
(3)估计电子元件寿命在100h—400h以内的概率;
(4)估计电子元件寿命在400h以上的概率.
(本题13分)
已知函数,
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)说明此函数图象可由,
的图象经怎样的变换得到.
(本题13分)
设两个非零向量a与b不共线,
(1)若向量=a+b,
=2a+8b,
=3(a-b),求证:A、B、D三点共线;
(2)试确定实数k,使向量ka+b和向量a+kb共线.
(1)已知角终边经过点P(-4,3),求
的值?
(2)已知函数,(b>0)在
的最大值为
,最小值为-
,求2a+b的值?
计算:
⑴;
(2)
(本小题满分15分)
若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.