(本小题满分10分)
(I)两数的最大公约数为400,则两数的公约数的个数是 ;
(II)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、上各装一个灯泡.要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用
一个的安装方法共有 种(用数字作答).
(本小题满分12
分)
过椭圆的右焦点F作与坐标轴不垂直的直线l交椭圆于A、B两点.
(1)求椭圆的标准方程;
(2)
(本小题满分12分)
已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)若S2为S1,Sm(m∈N*)的等比中项,求正整数m的值.
(本小题满分12分)
青海玉树发生地震后,为重建,对某项工程进行竞标,现共有6家企业参与竞标,其中A企业来自辽宁省,B、C两家企业来自山东省,D、E、F三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同.
(Ⅰ)列举所有企业的中标情况;
(Ⅱ)在中标的企业中,至少有一家来自山东省的概率是多少?
(本小题满分12分)
设函数。
(I)求函数单调区间;
(II)若恒成立,求a的取值范围;
(III)对任意n的个正整数
(1)求证:(2)求证:
(本小题满分12分)已知是x,y轴正方向的单位向量,设
,
且满足
(1)、求点P(x,y)的轨迹E的方程.
(2)、若直线过点
且法向量为
,直线与轨迹E交于
两点.点
,无论直线
绕点
怎样转动,
是否为定值?如果是,求出定值;如果不是,请说明理由.并求实数
的取值范围;