在直角梯形ABCD中, A为PD的中点,如下图,
将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,
(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值;
(3)在线段BC上是否存在点F,使SF//平面EAC?若存在,确定F点的位置,若不存在,请说明理由?
已知函数
的图象在点
处的切线方程为
.
(I)用 表示出 ;
(II)若 在 上恒成立,求 的取值范围;
(III)证明: .
已知数列 满足: , , ;数列 满足: .
(1)求数列 , 的通项公式;
(2)证明:数列 中的任意三项不可能成等差数列。
如图,在四面体 中, , 且 .
(Ⅰ)设为
为
的中点,证明:在
上存在一点
,使
,并计算
的值;
(Ⅱ)求二面角
的平面角的余弦值.
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用
(单位:万元)与隔热层厚度
(单位:
)满足关系:
.若不建隔热层,每年能源消耗费用为8万元。设
为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求
的值及
的表达式。
(Ⅱ)隔热层修建多厚时,总费用
达到最小,并求最小值。
已知函数
(Ⅰ)求函数
的最小正周期;
(Ⅱ)求函数
的最大值,并求使
取得最大值的
的集合。