设函数.
(1)、当时,用函数单调性定义求
的单调递减区间
(2)、若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为
和
,求
恒成立的概率;
如图,空间四边形SABC中,SO⊥平面ABC,O为△ABC的垂心。求证:平面SOC ⊥平面SAB。
如图,P为△ABC所在平面外一点,AP=AC,BP=BC,D为PC中点,直线PC与平面ABD垂直吗?为什么?
如图,D,E分别为三棱锥P—ABC的棱AP、AB上的点,且AD:DP=AE:EB=1:3.求证:DE//平面PBC
(本小题满分14分)有人玩掷正四面体骰子走跳棋的游戏,已知正四面体骰子四个面上分别印有,棋盘上标有第0站、第1站、第2站、…、第100站.一枚棋子开始在第0站,棋手每掷一次骰子,若掷出后骰子为
面,棋子向前跳2站,若掷出后骰子为
中的一面,则棋子向前跳1站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为
(
).
(Ⅰ)求;
(Ⅱ)求证:;
(Ⅲ)求玩该游戏获胜的概率.
(此题8、9、10班做)(本小题满分13分)
设数列的前
项和为
,对一切
,点
都在函数
的图象上.
(Ⅰ)求及数列
的通项公式
;
(Ⅱ) 将数列依次按1项、2项、3项、4项循环地分为(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值;
(Ⅲ)令(
),求证:
.